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FIRST MAGNETIC FIELD RESULTS FROM THE OGO-2 SATELLITE 

Joseph C. Cain, Robert A. Langel, Shirley J. Hendricks 

NASA Goddard Space Flight Center 

Greenbelt, Maryland, USA 

ABSTRACT 

The OGO-2 (1965-SlA) satellite was launched October 14, 1965 

into an orbit with an inclination of 87.4", perigee of 414 Km and 

apogee of 1510 Km. Digital samples of the total magnetic field F 

were obtained with a rubidium vapor magnetometer at 0.5 second 

intervals (accuracy f 2 y) . Root-mean-square differences between 

the measured field values and those computed from previously de- 

rived spherical harmonic expansions were computed. The best com- 

parison to the data is with the GSFC (9/65) field which showed re- 

siduals of 477.  computation of fields f i t  to this limited data sample 

show RMS deviations of 4.1 y using 143 internal spherical harmonics 

The residuals from this field show oscillations near the north pole 

of a few tens of gammas amplitude and irregular structure else- 

where of the order of a few gammas. 

... 
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Introduccion 

Near the close of the ICY Prof. Sydney Chapman (1961) suggested that an 

essential project for the IQSY period would be the renewed surveying of the geo- 

- 
magnetic field. A s  a result of this suggestion and independent recognition by other 

- geophysicists of the lack of worldwide magnetic survey data since the accidental 

destruction by fire of the survey ship "Carnegie" in 1929, there was instituted, a s  

a major goal of the IQSY co-operation, the measurement of the earth's main field 

on a global basis (Vestine, 1060). Already by the end of the IGY there was renewed 

activity of airborne magnetic surveying by the U. S. Navy's Project MAGNET, by 

theCanadians and also by such surface ships as the Russian non-magnetic ship 

"Zarya". A limited satellite survey was  carried out by thevanguard-3 satellite in 

1959 (Cain, et. al., 1962). Further impetus was given the space survey by the ex- 

change of letters between President Kennedy and Chairman Krushchev in 1962 

(Frutkin, 1965) to include magnetic surveys by satellite as one of the three areas of 

peaceful co-operation in outer space between the U.S. and the U.S.S.R. The pro- 

posal by Boroson, Cain and Heppner (1962) to incorporate an experiment for mag- 

netic field studies on board the first of the NASA series of polar Orbiting Geo- 

physical Observatories was designated as the U. S. space contribution to the IQSY 

World Magnetic Survey and the cooperative venture between the U.S. and the 

U. S. S. R. This experiment is planned on a continuing series of three near-earth 

polar Orbiting Geophysical Observatories that also include twenty other scientific 

experiments to investigate the physical phenomena in this region. It is the pre- 

liminary analysis of data from this first experiment that is being reported here. 
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ExDerimental Obiectives 
__ 

Since the prime initial objective of the magnetic field experiment was the 

mapping of the main field, it would have been desirable to measure the vector 

field components. However, an early evaluation of the OGO vehicle motions 

and available instruments for vector measurement revealed that only an accu- 

rate absolute instrument would be suitable to improve the presently available 

description of the earth's field. Some concern has been expressed as to whether 

a set of only scalar field measurements is sufficient to uniquely define the po- 

tential function from which the earth's vector geomagnetic field may be derived. 

Although the detailed mathematical proofs of the postulate a re  yet lacking, we 

have demonstrated (Cain, et. al., 1965) that at least a combination of scalar and 

vector measurements can be used to differentially adjust the Gauss coefficients 

of the potential so as to produce a realistic field. Also, numerical exercises 

have been carried out with this procedure using synthetic data computed from a 

potential function of internal origin with the result that the original coefficients 

were readily retrieved starting only with a set  of data generated on one spher- 

ical shell. 

c 

- 

* The ambient magnetic field measured by a satellite contains contributions not 

onlyfrom the core field and possibly the fieldof surface anomalies, but also contri- a. 

butions from electric currents in the ionosphere, and from the distortions due to 

trapped plasmas and the magnetospheric boundary. It is the study Of all of these 

phenomena s o  far  as it is possible from a near-earth polar satellite, that extend 

the experiment objectives beyond that of a simple mapping of the fjeld (Cain, 
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1966). Indeed, the determination of the main field itself requires a simultaneous 

investigation of these other influences ; and conversely the availability of an 

accurate main field is a necessary analytic tool to be able to study the time 

0. 

variations. 

MAGNETIC FIELD INSTRUMENTATION *c 

The magnetic field instrumentation was  carried out under the direction of 

Dr. James P. Heppner by M r .  W.H. Farthing and W.E. Folz (Heppner, 1963) 

using a crossed pair of double-cell Rubidium vapor magnetometers (Bloom, 

1962) of a design similar to the single Rubidium vapor magnetometer used on 

OGO-1 but tailored to the higher fields to be encountered by OGO-2. 

A sample interval of 0 . 5  sec was chosen to read out the counts of the Rbe5 

magnetometer. Since the field F is derived from the frequencyf-by the rela- 

tion F = f/4.66737, (Driscoll, 1964; Balling, 1964) a count of C over a time t 

(the frequency of the clock measuring t is much greater than that of the 

1 c f 1 or zz 2C/4.66737 f 0 . 4 y  for 
t 0 4.66737 

magnetometer) leads to a field F = - 

the 0.5  sec sample interval. Exhaustive testing of the effects of any 

permanent or transient spacecraft field on the sensing unit failed to find any 

interference at the magnetometer sensor above lp The absolute accuracy of 

this magnetometer is believed to be within f 2 7  with a precision of kO.47. 

OGO-2 OPERATION 

The OGO-2 vehicle was launched October 14, 1965 into an orbit with an 

inclination of 87.4",  equatorial perigee and apogee altitudes of 413 and 1510 km 

respectively, and a resulting anomalistic period of 104.3 minutes. The magnetic 
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field experiment was one of 20 scientific experiments on board the spacecraft 

(Ludwig, 1963; Scull and Ludwig, 1962). Although it was planned to maintain 

an earth orientation of one face of the spacecraft for a period of 6-12 months 

through the use of a system of reaction wheels and gas jets, it was noted soon 

after injection that anomalous oscillations in the attitude were causing the 

spacecraft to use the Argon control gas at a very high rate (Wiggins , 1965). 

Since the plane of the orbit at launch was in the twilight meridian, the space- 

craft was initially in sunlight 100% of the time and could maintain orientation 

of its solar panels to the sun in a spinning mode without entering the "earth 

acquiring" mode. I t  was thus initially possible to return to the spinning mode 

until the difficulty could be located. During these initial maneuvers the rubid- 

ium magnetometer was turned on nearly all of the time and the readings were 

recorded alternately by a pair of tape recorders on the vehicle. The data on 

these tapes were "dumped" every orbit or two to a ground station recorder so 

that the data from the magnetometer and other operating experiments were 

acquired for over 19 hours per day. On October 22 the orbital plane began to 

enter the earth's shadow with the result that the spacecraft began to use large 

amounts of gas to reacquire the sun each time it came out of the earth's shadow 

(This problem would not have been encountered under normal operation since 

the spinning mode was designed to be used only for the first few orbits.) By 

then it had been concluded that the anomalous gas useage in the normal earth 

acquisition mode was due to a design e r ro r  on the infrared horizon sensors 

r- 

"- 



- 5 -  

which resulted in their mistaking temperature gradients below the horizon for 

the gradients expected - at the horizon. The sensors thus produced erroneous 

control signals that would cause the spacecraft to frequently tip through large 

angles from horizontal. Since this behavior couldnot be corrected it was decided 

to  obtain as much %ormal" operation as possible and the spacecraft was again 

returned to the "earth acquire" mode. The remaining supply of Argon control 

gas was exhausted by the end of October 23. The solar panels soon could not track 

- W  

h 

the sun and the batteries were drained by October 24 to a point where all 

experiments were automatically switched off by an f'undervoltage" relay. 

Surprisingly, on October 29 the batteries were found to be recharged and the 

spacecraft was returned to operation. It was then learned that even with the lack 

of control gas some partial operation was possible. A total of some 70 days of 

magnetic field data has been subsequently acquired during those intervals when 

the orbital plane was in a nearly full  sunlight condition or  when the spacecraft 

motion allowed keeping the solar panels oriented towards the sun. Only a few 

orbits of data every few days were obtainable for the period in December when 

the orbit plane was near the noon-midnight configuration. Further deterioration 

of the spacecraft occurred with the loss of one of its two batteries December 29 

and partial malfunctions of the tape recorders. Even so, nearly continuous mag- 

netic field data were obtained for the period from mid-January 1966 through 

March and it is expected that more data can be acquired in late June when the 

orbit plane is again fully sunlit. 
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REDUCTION OF MAGNETIC FIELD DATA 

Of the total set  of data recorded by the spacecraft, the final processing 

I' 
including final application of time corrections has only recently (May, 1966) 

been completed for  the data acquired during October 14 and 15, 1965. The 

substance of the analysis reported herein is based on data taken November 9-11, 

A 

1965 and subjected to a preliminary processing. A plot of the locations of 

these data is given in the map of Figure 1. One coincidental feature of this 

time interval is that the global magnetic activity index K, is 0,  rising to 2 only 

for the last 9 hours of November 11. 

ORBIT DETERMINATION 

The reason the above interval was chosen for a preliminary analysis was 

that it was the only one for which an "interim-definitive" orbit was available. 

Since there was a heavy use of the gas jets during the period October 14-24, 

it is assumed that there will be perturbations making the determination of a 

definitive orbit more difficult. 

The November 9-11 orbit was determined for us by Dr.  J.  Siry and Mr.  D. 

Stewart of Goddard Space Flight Center and based on the available radio track- 

ing observations from the NASA Minitrack and its newer S-band Range and 

Range-Rate system (Habib, et. al., 1963). The orbital a rc  of nearly five days 

November 7 to November 12, 1965, was determined with the residuals to the 

tracking data as given in Table I. 
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Table I 

Observation Type Minitrack Range Range Rate 

No. of observations 209 75 75 

standard deviations 0.0006(1,m) 125 m 0.54  m/sec 

approximate relative 
weights in fi t  

-. 
h 

1 50 22 

The technique of orbital determination was based on Brouwer's (1959) theory 

which includes effects of geogravitational zonal harmonics through the fifth. 

Certain additional effects associated with drag and lunar and solar perturbations 

were included by means of a numerical integration method. The following values 

for the zonal gravitational field terms up to J, were utilized (all x 

J, = 1082.48, J, = -2.56, J4 = -1.84 and J, = -0.06. 

Private discussions with Guier and Newton (1965) and Yionoulis (1965) 

have brought to light the possibility that the OGO-2 satellite is likely subject to 

14 14 a resonance due to the J,, and J,, terms of the gravitational potential and other 

effects due to the neglect of the other major non-zonal terms. The resonance 

possibliity is based on the fact that the ratio of the node-to-node period of the 

earth rotation (1437 min) is 13.8 times the nodal period of 104.1 minutes. How- 

ever, without further study it is not clear whether the neglect of the non-zonal 

terms poses any problem for the final computed orbit in terms of inaccuracies 

of the computed magnetic field values. 

A real  danger in this orbital determination is the extreme sparseness of the 

data. Since apogee for this period was near the southern apex of the orbit, 
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most of the tracking data were concentrated in the low southern latitudes. It 

would not be unlikely for the actual e r ro r s  to mushroom to several times those 

indicated in Table I over unobserved portions of the orbit. 

COMPARISON OF DATA WITH FIELD MODELS 

.- 
4 

The measured values of scalar field F were compared with those computed 

from previously published models of the earth's core field using the positions 

given from the above orbit. The root-mean-square residuals from the three 

fields LME (Leaton, Malin and Evans, 1965), GSFC(4/64) (Cain, et. al., 

1965), and GSFC(9/65) (Hendricks and Cain, 1966) a re  given in the top half 

of Table 2. As noted previously, (Cain, 1965) it is thought that the LME field 

does not extrapolate as well in altitude as do the GSFC fields since it ignores 

the earth's oblateness in its derivation. However, it is known (Cain, 1966) to 

f i t  the surface data slightly better than does the GSFC(4/64) field. At  the 

present time it is thus demonstrated that the overall e r r o r  of the GSFC(9/65) 

field is the lowest for the current epoch of all models known to us. We have 

also investigated the distribution of the peak deviations of the GSFC(9/65) 

field from the data to determine where the largest e r ro r s  appear and whether 

there is any systematicity to their occurrence. The result is  that the few 

values where the e r r o r  is largest, lying in the range 100 to 150y, occur in the 

South Pacific, Antarctic and Eastern Russia as predictable by the paucity of 

data; though the peaks are displaced somewhat from the locations of the pre- 

dicted maxima (Cain, 1966). Also, the remaining peak e r ro r s  follow a definite 
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pattern in regard to regions of positive A F  (computed field too low) and negative 

AF (computed field too high). That i s ,  with the exception of data taken over the 

Pacific in latitudes from 10 to 35"N, all peaks at low latitude a re  negative (com- 

puted field too large). Correspondingly, the field computed in polar regions 

tends to be a few tens of gammas too low. 

- -  

- 

TABLE 2 

Root-Mean-Square Residuals to OGO-2 Magnetic Data From 

Computed Fields (November 9-11, 1565). 

Field Model GSF C (9 /6 5) GSF C(4/64) LME 

Gauss Coefficients 99 63 80 

RMS(Y) 47 80 83 

. 

Field Model O W - 2  (5/66) 

Gauss Coefficients 143 120 95 80 

RMS(Y) 4.1 4.7 6.3 14.2 

We think it most likely that these systematic deviations in AF arise from e r ro r s  in 

the secular change estimates (the GSFC(9/65) field contained time derivatives 

only - for the first 48 coefficients) and from ignoring systematic Dst  (storm- 

time) effects in all calculations. 

PRELIMINARY ANALYSIS OF DATA 

Since the A F  = (F measured - F computed) is still quite large when the 

field is computed from the GSFC(9/65) coefficients it was decided to follow 

the technique used for the Vanguard-3 analysis (Cain, et. al., 1962) and make a 



- 1 0  - 

differential correction of the coefficients using the OGO-2 data alone. Because 

the data occupy such a small time span, the time derivatives of the coefficients 

were held fixed. The results of this exercise a re  given in the lower half of -_ 
Table 2 .  Here are  shown four field models f i t  to the data themselves using a 

varying number of Gaussian coefficients corresponding to truncating the series 

- 

equally in n and m. Thus for a maximum n = m = 11, the number of parameters 

is 143. (The number of Gauss coefficients = (nmax + 1) -1). One can note that 

the percentage drop in the RMS residuals halves with each increase of nmax. 

That is, the improvement from 8 to 9 is 50%, from 9 to 10 is 25%, and from 

10 to 11 is 13%. The fact that the RMS er ror  is almost an order of magnitude 

2 

less for these models than for those in the upper half of the Table is indicative 

of the future improvement that should be possible in the main field models. 

Of course, one should not attempt to use any of these preliminary analyses 

of the OGO-2 data as a realistic world-wide model of the core field since the 

data distribution still contains large gaps and the orbit was in a fixed local 

time vs. latitude orientation during the period of the data acquisition. As seen 

in Figure 2, all of the mid-latitude data were either at 2-4 am o r  2-4 pm and 

the polar data were at the intervening local times. Further, during this period 

# 

. 
perigee was near the north pole and apogee near the south pole. Since any 

quiet daily variation or  external field configuration will have systematic com- 

ponents with local time, these will likely be absorbed into the set of internal 

Gauss coefficients. 
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A typical curve of the residuals of AF verses time for one complete orbit 

is given in Figure 3. Shown here is the plot of all of the data taken from 

gh 45"'to 12h Om U.T .  on November 10, 1965. The latitude, longitude (east 

positive), and altitude (kilometers above geoid) are given each 15 minutes. 

The precision of 

the curve. However, superposed on this noise level a re  seen both a fine 

structure of perhaps f l y  amplitude and a fraction of a minute period, irregular 

sharp discontinuities of 1 to 2yand a wave structure of up to 15 minutes period 

and only 5 amplitude except near perigee. Experience at comparing various 

of such graphs has shown that the character of the longer period structure 

changes when a different number of coefficients are used. 

w 

.4 y in the digitization accounts for most of the thickness of 

However, near perigee there always appear sharp oscillations with peak 

deviations of a few tens of gamma. Since perigee occurs for these data near 

the northern apex of the orbit it is not yet clear whether this phenomenon is due 

to some peculiarity of the temporal field in the night time polar region, some 

anomalous orbital e r ror ,  or simply some unknown characteristic of the 

analysis technique. Since the change in altitude from apogee to perigee is a 

smooth one, it is difficult to see how the sudden appearance of such a large 

oscillation could be due to any increase in sensitivity to higher harmonics of 

the spatial field structure with decreasing altitude. 

One of the pertinent features of the geomagnetic field is that the spatial 

gradients in the horizontal direction a re  everjwhere of the order of 2y/km 
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whereas the vertical gradients vary from about 5y/lun near apogee to 20-3Oy/km 

near perigee. If we assume that the e r ro r s  in the orbit are roughly spherical, 

then the oscillations at perigee could arise from altitude e r rors  of only e. 

w 
0 .5  to lkm. Such a postulate could also account for the oscillations of periods 

of the order of 15 minutes since these a re  of sufficiently long wavelength that 

they should be fit by the high order (n = m = 11) polynomials used. Of course 

any temporal changes in the field would have the same result. However, if 

such changes a re  temporal, they would likely be a result of the day-to-day 

variability in the quiet solar daily variation Sq instead of disturbance since the 

field was very quiet during most of the interval. 

Discussions and Conclusions 

The preliminary work done to date on the OGO-2 magnetic data lends sup- 

port to the hope that a complete analysis will result in a description of the 

main field that has e r rors  at least an order of magnitude less than do present 

models. These new models will serve as  benchmarks for refined studies of 

the secular variations of the core field and as tools for understanding the nature 

of the field distortions above the ionosphere. Visual inspection of the present 

results already indicates possible detection at a few gamma level of such 

spatially narrow phenomena as  crustal magnetic anomalies. The lack of enough 

tracking data to guarantee a precise position of the satellite at the time of the 

field measurement is seen to pose a possible problem to the data analysis. 

Nevertheless, it is expected that at least the initial objectives of the IQSY World 

I 
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Magnetic Survey can be satisfied with the data from this satellite with hopes 

that some insights may be achieved in understanding the physical processes 

determining the temporal changes of the magnetic field above the ionosphere. 
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Figure Captions 

1. 

2. 

Locations of OGO-2 Magnetic Field Data November 9-11, 1965 

Local time - Latitude - perigee configuration for the OGO-2 orbit 

November 9-11, 1965 

TypicalnF vs. time plots of OGO-2 data where the computed field is that 

designated in Table 2 as 0(;0-2(5/66) with 143 parameters 

3. 
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